UNIT 2 • LINEAR AND EXPONENTIAL RELATIONSHIIPS

Lesson 1: Graphs As Solution Sets and Function Notation

Instruction

Prerequisite Skills

This lesson requires the use of the following skills:

- substituting values for the variables
- understanding domain and range

Introduction

So far we have seen a function f of a variable x represented by $f(x)$. We have graphed $f(x)$ and learned that its range is dependent on its domain. But, can a function be applied to expressions other than x ? What would it mean if we wrote $f(2 x)$ or $f(x+1)$? In this lesson, we will explore function notation and the versatility of functions.

For example, let f be a function with the domain $\{1,2,3\}$ and let $f(x)=2 x$. To evaluate f over the domain $\{1,2,3\}$, we would write the following equations by substituting each value in the domain for x :

$$
\begin{aligned}
& f(1)=2(1)=2 \\
& f(2)=2(2)=4 \\
& f(3)=2(3)=6
\end{aligned}
$$

$\{2,4,6\}$ is the range of $f(x)$.

Key Concepts

- Functions can be evaluated at values and variables.
- To evaluate a function, substitute the values for the domain for all occurrences of x.
- To evaluate $f(2)$ in $f(x)=x+1$, replace all x 's with 2 and simplify: $f(2)=(2)+1=3$.

This means that $f(2)=3$.

- $\quad(x,(f(x))$ is an ordered pair of a function and a point on the graph of the function.

Common Errors/Misconceptions

- thinking function notation means " f times x " instead of " f of x "
- trying to multiply the left side of the function notation

