Skill 5: Finding the Slope or Rate of Change of Linear Functions Introduction

A proportional relationship describes the relationship between two quantities that vary directly with one another. A few common proportional relationships that we encounter in our everyday lives include the speed a car travels (miles per hour), the amount of gas consumed on a road trip (gallons per mile), the amount of money earned at a job (dollars per hour), or the number of calories per serving of a favorite snack food (calories per serving). In all of these examples, each of the two quantities described varies directly with the other.

Key Concepts

- The quantities described by a proportional relationship are represented by a linear equation in the form $y=m x$, where m is the slope of the line that passes through the origin $(0,0)$.
- The slope of the graph of a linear equation is a measure of the rate of change of one variable with respect to another variable, and is defined by the ratio of the rise of the graph compared to the run.

- Given two points on a line, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, the slope is the ratio of the change in the y-values of the points (the rise) to the change in the corresponding x-values of the points (the run).

$$
\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- The first step in calculating the slope of a line is to choose two points on the line and label the coordinates of these points as $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Then, the rate of change can be found by applying the slope formula. Reduce any fractions to ensure the slope is in simplest form.

UNIT 2 • QUADRATIC FUNCTIONS AND MODELING
Lesson 2: Interpreting Quadratic Functions
Instruction

- In the following graph, notice that two easily identifiable points on the line are $(4,3)$ and $(8,6)$.

- Let $\left(x_{1}, y_{1}\right)$ be $(4,3)$ and $\left(x_{2}, y_{2}\right)$ be $(8,6)$. Substitute these values into the slope formula and simplify to find the slope of the line.

$$
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{(6)-(3)}{(8)-(4)}=\frac{3}{4}
$$

- The given line has a rise of 3 units and a run of 4 units; therefore, the slope of the line is $\frac{3}{4}$.
- Note that if the assignment of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ was switched in this example, the result would still be the same. For example, let $\left(x_{1}, y_{1}\right)$ be $(8,6)$ and $\left(x_{2}, y_{2}\right)$ be $(4,3)$. Substitute and simplify.

$$
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{(3)-(6)}{(4)-(8)}=\frac{-3}{-4}=\frac{3}{4}
$$

- The resulting slope is still $\frac{3}{4}$.
- Although it does not matter which point is $\left(x_{1}, y_{1}\right)$ and which is $\left(x_{2}, y_{2}\right)$, it is important to make sure that the order in which the variables are subtracted remains the same in the numerator and denominator. In other words, slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$; however, slope $\neq \frac{y_{1}-y_{2}}{x_{2}-x_{1}}$.
- The slope of an equation that describes a proportional relationship is also known as the unit rate, or the rate per one given unit.
- The calculation of slope can be extended beyond proportional relationships to that of linear equations of the form $y=m x+b$, where b is the y-intercept.

